推荐词
原文链接
正文
Associated Data
Online Table.ptc-66-348-OnlineTable.pdf (405K)GUID: 238B108A-87F0-4453-B15E-999337FAE935
ABSTRACT
Objectif : Déterminer les principales caractéristiques des muscles stabilisateurs afin d’éclairer la formulation d’une définition des muscles stabilisateurs basée sur les éléments de preuve disponibles. Méthodes : On a effectué, dans des bases de données électroniques, une recherche systématique de publications pertinentes depuis le début jusqu’en juin 2013 en utilisant des mots clés liés à la stabilité, aux muscles et aux caractéristiques des muscles stabilisateurs. Les études comportant au moins une caractéristique d’un muscle stabilisateur ont été incluses. Pour les fins de l’évaluation de la qualité, on a classé tous les articles inclus comme études expérimentales ou traduisant une opinion. On a évalué la qualité méthodologique au moyen d’une liste de contrôle personnalisée et analysé les données au moyen d’une synthèse narrative comportant une analyse de contenu. Le nombre d’articles présentant des éléments de preuve directs à l’appui de l’existence d’un lien entre la caractéristique et la stabilité de l’articulation ou un élément de preuve indirect indiquant qu’un muscle considéré comme muscle stabilisateur présentait cette caractéristique a déterminé le niveau d’importance de la caractéristique en question pour les muscles stabilisateurs. Résultats : Au total, 77 études répondaient aux critères d’inclusion. Le nombre le plus élevé d’articles présentant des éléments de preuve à l’appui du fait qu’une caractéristique musculaire en particulier joue un rôle stabilisateur portait sur les caractéristiques biomécaniques (27 articles), neurologiques (22 articles) et anatomiques/physiologiques (4 articles). Conclusion : Compte tenu d’une synthèse des éléments de preuve à l’appui tirés des publications, il est possible de définir les muscles stabilisateurs comme des muscles qui contribuent à la rigidité d’une articulation par cocontraction et qui sont activés rapidement en réponse à une perturbation par un mécanisme de contrôle de l’alimentation et de la rétroaction. Ces résultats peuvent aider les chercheurs à étudier les muscles qui montrent ces caractéristiques afin de déterminer si des muscles en particulier ont un rôle stabilisateur plutôt que moteur au cours du fonctionnement normal.
Mots clés : articulations, muscles, instabilité des articulations
Stability is a commonly discussed concept in physiotherapy and rehabilitation. A lack of stability is recognized as the primary complaint in conditions such as dislocated shoulder, where intervention after joint reduction may focus on an exercise programme to maintain stability through muscle action. The broader concepts of stability, such as “motor control” and “core stability,” have evolved as the fundamental principles behind many rehabilitation and preventive programmes.1–3 Although several attempts have been made to define stability, no single, universally accepted definition is available.
Joint stability has been defined as “the strength of the bond between the bones in a joint.”4(p.105) Several theories about stability have been advanced in the literature, including the model of active, passive, and neural subsystems;5,6 local and global stability systems;2,7,8 core control;3,7 transarticular muscle forces;9 dynamic stabilization;10 and sensory-motor control.2,8
All of these concepts and theories strongly suggest that muscles and motor control play an important role in joint stability. For example, many studies have reported that the rotator cuff muscles act as dynamic stabilizers at the glenohumeral joint;11,12 similarly, the stabilizing systems of the lumbar spine include muscles that control movement and are essential to normal functioning of the spine.13,14 On this basis, many rehabilitation programmes aim to improve function and motor control of these stabilizer muscles to provide joint stability and protect from injuries.1–3
While the importance of muscles to joint stability is recognized, the exact definition and characteristics of stabilizer muscles are less clear and lack supporting evidence.7,8 Given the apparent importance of stabilizer muscles to normal joint function, understanding their characteristics and, more importantly, exploring the supporting evidence for these characteristics will help identify such muscles when diagnosing musculoskeletal disorders and inform the design of successful rehabilitation programmes.
The aim of our systematic review, therefore, was to determine the key characteristics, based on available evidence, of stabilizer muscles to inform the development of a definition of stabilizer muscles.
Methods
Data sources and search
We systematically searched four electronic databases (AMED, CINAHL, Medline, and SPORT Discus) for relevant literature from the databases’ inception to June 2013 using three search concepts linked together with the AND operator and combining keywords within each concept with the OR operator (see online table for keywords). The first search concept used the term muscl*; the second used terms related to stability, such as stabiliz*, control, or stiffness. Terms used for the third search concept, characteristics, were derived from characteristics commonly mentioned in the literature, such as feed-forward and feedback, muscle recruitment, and muscle architectural characteristics.
Study selection
After the initial online searches, we removed all duplicate articles. The selection criteria (Box 1) were then applied to the titles and abstracts by two reviewers working independently. All potentially eligible studies were selected for a full-text review and were assessed by two reviewers who independently reapplied the eligibility criteria. Inclusion in the review was then determined by consensus. Studies were included if they described at least one characteristic of a stabilizer muscle, based on the categories of classification suggested by Ng and colleagues: anatomical/physiological, neurological, or biomechanical.13
Box 1
Selection Criteria
Inclusion criteria | Exclusion criteria |
---|---|
• Studies that provided an implied definition of a stabilizer muscle including at least one characteristic: | • Intervention studies that did not provide any information about the characteristics of a stabilizer muscle |
– Anatomic/physiologic | • Studies that were mainly focused on other muscle characteristics, e.g., delayed onset muscle soreness |
○ e.g., Fibre type | |
– Neurological | • Animal studies |
○ e.g., Timing of onset | • Abstracts |
– Biomechanical | • Dissertations |
○ e.g., Angle of pull | |
• English language only |
Quality assessment
We classified the articles as either opinion-based or experimental studies. Since the existing quality appraisal tools were inappropriate for this type of review, we created a customized checklist (see Table 1) to address key sources of bias.15 Opinion-based studies were considered less subject to bias if they followed a systematic search strategy, and experimental studies were considered less subject to bias if they provided supporting evidence. Supporting evidence was either direct in that it supported the link between the characteristic and joint stability or indirect in that it showed that a muscle considered to be a stabilizer has that characteristic (Table 1). No studies were excluded based on the outcome of the quality assessment.
Table 1
Characteristics of Stabilizer Muscles as Described in Current Literature and Quality Assessment of the Included Studies
Study type | Biomechanical characteristics | Neurological characteristics | Anatomical/ physiological characteristics | Quality assessment | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Reference | Joint compression | Muscle mechanics | Neuromuscular control | Recruitment | O1 | O2 | O3 | E1 | ||
Arbanas (2009)29 | E | ✓ | N | |||||||
Bergmark (1989)7 | O | ✓ | N | Y | N | |||||
Boettcher (2010)12 | E | ✓ | ✓ | N | ||||||
Bogduk (1992)30 | E | ✓ | N | |||||||
Borghuis (2008)1 | O | ✓ | ✓ | ✓ | ✓ | N | Y | N | ||
Brown (2005)82 | E | ✓✓✓ | ✓✓ | Y | ||||||
Brown (2005)31 | E | ✓ | ✓✓✓ | Y | ||||||
Lin (2011)33 | E | ✓✓✓ | ✓ | Y | ||||||
Cheng (2008)34 | E | ✓✓ | Y | |||||||
Cholewicki (2002)37 | E | ✓✓✓ | ✓✓ | Y | ||||||
Cholewicki (1996)35 | E | ✓ | ✓✓✓ | Y | ||||||
Cholewicki (1997)36 | E | ✓✓✓ | Y | |||||||
Comerford (2001)2 | O | ✓ | N | Y | N | |||||
Comerford (2001)8 | O | ✓ | ✓ | N | Y | N | ||||
Cowan (2002)38 | E | ✓ | ✓ | N | ||||||
Crisco (1991)39 | E | ✓ | ✓ | N | ||||||
Danneels (2001)40 | E | ✓✓ | ✓✓ | ✓✓ | N | |||||
Davarani (2007)41 | E | ✓✓✓ | ✓✓✓ | N | ||||||
Day (2012)11 | E | ✓✓ | ✓✓ | N | ||||||
Delahunt (2006)42 | E | ✓✓✓ | N | |||||||
Franklin (2007)43 | E | ✓✓✓ | ✓✓✓ | N | ||||||
Gardner-Morse (95)44 | E | ✓ | ✓✓✓ | N | ||||||
Gardner-Morse (98)45 | E | ✓✓✓ | ✓✓✓ | N | ||||||
Gibson (2004)81 | E | ✓✓ | ✓✓ | N | ||||||
Granata (2001)46 | E | ✓ | ✓✓ | N | ||||||
Granata (2001)48 | E | ✓✓✓ | ✓ | ✓✓✓ | Y | |||||
Granata (2004)47 | E | ✓ | N | |||||||
Granata (2007)49 | E | ✓✓ | ✓✓ | Y | ||||||
Guieterrez (2009)19 | O | ✓ | N | Y | N | |||||
Hides (2008)50 | E | ✓ | N | |||||||
Hodges (1999)20 | O | ✓ | ✓ | ✓ | ✓ | N | Y | N | ||
Hodges (1998)52 | E | ✓ | ✓✓✓ | ✓✓✓ | Y | |||||
Hodges (1996)51 | E | ✓ | ✓✓✓ | ✓✓✓ | Y | |||||
Holmes (2009)21 | O | ✓ | ✓ | N | Y | N | ||||
Hossain (2005)22 | O | ✓ | N | CT | N | |||||
Hungerford (2003)53 | E | ✓ | ✓ | N | ||||||
Huxel (2008)54 | E | ✓ | ✓✓✓ | ✓✓ | Y | |||||
Jemmett (2004)55 | E | ✓✓ | Y | |||||||
An (2002)18 | O | ✓ | N | CT | N | |||||
Kalimo (1989)23 | O | ✓ | N | CT | N | |||||
Kibler (2006)3 | O | ✓ | N | Y | N | |||||
Lee (2000)58 | E | ✓✓✓ | Y | |||||||
Lee (2002)59 | E | ✓ | ✓✓✓ | Y | ||||||
Lee (2006)56 | E | ✓✓✓ | ✓ | Y | ||||||
Lee (2007)57 | E | ✓✓✓ | ✓ | Y | ||||||
Lin (2011)60 | E | ✓✓✓ | ✓✓ | Y | ||||||
MacDonald (2006)24 | O | ✓ | ✓ | N | Y | N | ||||
Macintosh (1986)61 | E | ✓ | N | |||||||
Matějka (2006)62 | E | ✓✓✓ | Y | |||||||
Mcgill (2003)10 | O | ✓ | N | Y | N | |||||
Morris (2012)63 | E | ✓ | N | |||||||
Ng (1998)13 | O | ✓ | N | Y | N | |||||
Norris (1995)14 | O | ✓ | N | CT | N | |||||
Norris (1995)26 | O | ✓ | ✓ | N | Y | N | ||||
Norris (1995)25 | O | ✓ | N | Y | N | |||||
O'Sullivan (1997)65 | E | ✓ | N | |||||||
O'Sullivan (1998)64 | E | ✓ | N | |||||||
Panjabi (1989)66 | E | ✓ | ✓ | N | ||||||
Panjabi (1992)5 | O | ✓ | ✓ | N | Y | N | ||||
Panjabi (1992)6 | O | ✓ | N | Y | N | |||||
Panjabi (1994)27 | O | ✓ | ✓ | N | Y | N | ||||
Radebold (2000)67 | E | ✓ | N | |||||||
Regev (2011)68 | E | ✓✓✓ | Y | |||||||
Rodosky (1994)69 | E | ✓✓✓ | Y | |||||||
Sakurai (1998)70 | E | ✓ | N | |||||||
Silfies (2005)72 | E | ✓ | ✓ | N | ||||||
Silfies (2009)71 | E | ✓ | N | |||||||
Sinkjær (1991)73 | E | ✓ | ✓ | ✓✓ | Y | |||||
Stokes (2000)74 | E | ✓ | ✓ | N | ||||||
Stokes (2011)75 | E | ✓ | ✓ | ✓ | N | |||||
van Dieën (2003)76 | E | ✓✓✓ | Y | |||||||
Vera-Garcia (2006)77 | E | ✓✓✓ | ✓ | Y | ||||||
Ward (2006)78 | E | ✓✓ | ✓✓✓ | Y | ||||||
Ward (2009)79 | E | ✓✓ | ✓ | ✓✓ | Y | |||||
Wattanaprakomkul (2011)80 | E | ✓✓ | Y | |||||||
Williams (2001)28 | O | ✓ | N | Y | N | |||||
Total Count | 40 | 30 | 28 | 23 | 10 | |||||
Count of records with direct supporting evidence | 11 | 8 | 7 | 3 | 3 | |||||
Count of records with indirect supporting evidence | 3 | 5 | 5 | 7 | 1 | |||||
Total count of records with any supporting evidence | 14 | 13 | 12 | 10 | 4 |
O1=Was a specific search strategy described?; O2=Were important, relevant studies included?; O3=Did the authors check the quality of the included studies?; E1=Did they provide any supporting evidence in relation to stability?; E=experimental study; O=opinion-based study; ✓=characteristic reported; ✓✓= characteristic reported with indirect supporting evidence; ✓✓✓=characteristic reported with direct supporting evidence; Y=Yes; N=No; CT=Can’t tell.
Data analysis
We used a content analysis approach to collect data about characteristics of stabilizer muscles from selected studies. This involved applying the three principles of content analysis: (1) develop categories before searching for them in the data; (2) select the sample to be categorized; and (3) count or systematically record the number of times each category occurs.16
We first developed three categories of characteristics of stabilizer muscles—anatomical/physiological, neurological, and biomechanical—in accordance with the classification by Ng and colleagues.13 Individual sentences, terms, or paragraphs that related to a characteristic were identified in each article. Thereafter, we used an axial coding approach to link these selected characteristics of stabilizer muscles to the original three categories via sub-categories.17 For each study, consistent with the third principle of content analysis, we recorded the occurrence of stabilizing characteristics and whether or not the study found supporting evidence (direct or indirect) to link the characteristic to stability. The number of articles that provided supporting evidence linking a particular concept to stability determined its level of significance in describing a characteristic of stabilizer muscles.
Results
Yield
Our initial searches identified a total of 2,079 articles. After applying our selection criteria, 77 studies were selected for review (see Figure 1).
Open in a separate windowFigure 1
Selection process for included studies.
Quality assessment
Of the 77 included studies, 21 were opinion-based studies,2,3,5–8,10,13,14,18–28 and the remaining 56 were experimental studies11,12,28–81 (see Table 1). Our quality analysis found that none of the opinion-based studies provided information on their search strategy or on the quality of the included studies; they provided only low-level evidence on the stabilizing characteristics of muscles, as they referred to studies that included experimental evidence based on other studies. Of the 56 experimental studies, 36 provided supporting evidence: 26 provided direct evidence to support a link between the characteristic and joint stability, and 10 provided indirect evidence that a muscle considered to be a stabilizer has that characteristic (Table 1).
Characteristics of stabilizer muscles
Axial coding identified 11 characteristics, which were grouped in sub-categories as required under the original three categories of the characteristics of stabilizer muscles (see Figure 2). Definitions of the key characteristics and their relationship to joint stability are presented in Box 2.
Open in a separate windowFigure 2
Characteristics of Stabilizer Muscles. Figures in parenthesis (a, b) represent the number of studies reporting that characteristic (a) and number of studies with supporting evidence (b).
PCSA=Physiological Cross Sectional Area
Box 2
Definitions of Muscle Characteristics and Their Relationship to Joint Stability
Online Table
Click here to view.(405K, pdf)
Go to:
Notes
Physiotherapy Canada 2014; 66(4);348–358; doi:10.3138/ptc.2013-51
References
- Borghuis J, Hof AL, Lemmink KAP. The importance of sensory-motor control in providing core stability: implications for measurement and training. Sports Med. 2008;38(11):893–916. http://dx.doi.org/10.2165/00007256-200838110-00002. Medline:18937521. [PubMed] [Google Scholar]
- Comerford MJ, Mottram SL. Functional stability re-training: principles and strategies for managing mechanical dysfunction. Man Ther. 2001;6(1):3–14. http://dx.doi.org/10.1054/math.2000.0389. Medline:11243904. [PubMed] [Google Scholar]3. Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36(3):189–98. http://dx.doi.org/10.2165/00007256-200636030-00001. Medline:16526831. [PubMed] [Google Scholar]4. Watkins J. Structure and function of the musculoskeletal system. 2nd ed. Leeds: Human Kinetics; 2010. [Google Scholar]5. Panjabi MM. The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992;5(4):383–9, discussion 397. http://dx.doi.org/10.1097/00002517-199212000-00001. Medline:1490034. [PubMed] [Google Scholar]6. Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord. 1992;5(4):390–7. http://dx.doi.org/10.1097/00002517-199212000-00002. Medline:1490035. [PubMed] [Google Scholar]7. Bergmark A. Stability of the lumbar spine: a study in mechanical engineering. Acta Orthop Scand Suppl. 1989;60(s230):1–54. http://dx.doi.org/10.3109/17453678909154177. Medline:2658468. [PubMed] [Google Scholar]8. Comerford MJ, Mottram SL. Movement and stability dysfunction—contemporary developments. Man Ther. 2001;6(1):15–26. http://dx.doi.org/10.1054/math.2000.0388. Medline:11243905. [PubMed] [Google Scholar]9. MacConaill MA, Basmajian JV. Muscles and movements: a basis for human kinesiology. 2nd ed. Huntington, NY: RE Krieger Pub Co; 1969. [Google Scholar]10. McGill SM, Grenier S, Kavcic N, et al. Coordination of muscle activity to assure stability of the lumbar spine. J Electromyogr Kinesiol. 2003;13(4):353–9. http://dx.doi.org/10.1016/S1050-6411(03)00043-9. Medline:12832165. [PubMed] [Google Scholar]11. Day A, Taylor NF, Green RA. The stabilizing role of the rotator cuff at the shoulder–responses to external perturbations. Clin Biomech (Bristol, Avon) 2012;27(6):551–6. http://dx.doi.org/10.1016/j.clinbiomech.2012.02.003. Medline:22391506. [PubMed] [Google Scholar]12. Boettcher CE, Cathers I, Ginn KA. The role of shoulder muscles is task specific. J Sci Med Sport. 2010;13(6):651–6. http://dx.doi.org/10.1016/j.jsams.2010.03.008. Medline:20452282. [PubMed] [Google Scholar]13. Ng JKF, Richardson CA, Kippers V, et al. Relationship between muscle fiber composition and functional capacity of back muscles in healthy subjects and patients with back pain. J Orthop Sports Phys Ther. 1998;27(6):389–402. http://dx.doi.org/10.2519/jospt.1998.27.6.389. Medline:9617724. [PubMed] [Google Scholar]14. Norris CM. Spinal stabilisation: 1. Active lumbar stabilisation—concepts. Physiotherapy. 1995;81(2):61–4. http://dx.doi.org/10.1016/S0031-9406(05)67046-0. [Google Scholar]15. Centre for Reviews and Dissemination. CRD’s guidance for undertaking reviews in healthcare. York (UK): Centre for Reviews and Dissemination, University of York; 2009. Available from: http://www.york.ac.uk/inst/crd/pdf/Systematic_Reviews.pdf. [Google Scholar]16. Kellehear A. The unobtrusive researcher: a guide to methods. Sydney: Allen and Unwin; 1993. [Google Scholar]17. Liamputtong P, Douglas E. Qualitative research methods. 2nd ed. South Melbourne: Oxford University Press; 2005. [Google Scholar]18. An K-N. Muscle force and its role in joint dynamic stability. Clin Orthop Relat Res. 2002;403(Suppl):S37–42. http://dx.doi.org/10.1097/00003086-200210001-00005. Medline:12394451. [PubMed] [Google Scholar]19. Gutierrez GM, Kaminski TW, Douex AT. Neuromuscular control and ankle instability. PM R. 2009;1(4):359–65. http://dx.doi.org/10.1016/j.pmrj.2009.01.013. Medline:19627919. [PubMed] [Google Scholar]20. Hodges PW. Is there a role for transversus abdominis in lumbo-pelvic stability? Man Ther. 1999;4(2):74–86. http://dx.doi.org/10.1054/math.1999.0169. Medline:10509061. [PubMed] [Google Scholar]21. Holmes A, Delahunt E. Treatment of common deficits associated with chronic ankle instability. Sports Med. 2009;39(3):207–24. http://dx.doi.org/10.2165/00007256-200939030-00003. Medline:19290676. [PubMed] [Google Scholar]22. Hossain M, Nokes LD. A model of dynamic sacro-iliac joint instability from malrecruitment of gluteus maximus and biceps femoris muscles resulting in low back pain. Med Hypotheses. 2005;65(2):278–81. http://dx.doi.org/10.1016/j.mehy.2005.02.035. Medline:15922100. [PubMed] [Google Scholar]23. Kalimo H, Rantanen J, Viljanen T, et al. Lumbar muscles: structure and function. Ann Med. 1989;21(5):353–9. http://dx.doi.org/10.3109/07853898909149220. Medline:2532525. [PubMed] [Google Scholar]24. MacDonald DA, Lorimer Moseley G, Hodges PW. The lumbar multifidus: does the evidence support clinical beliefs? Man Ther. 2006;11(4):254–63. http://dx.doi.org/10.1016/j.math.2006.02.004. Medline:16716640. [PubMed] [Google Scholar]25. Norris CM. Spinal stabilisation: 3. Stabilisation mechanisms of the lumbar spine. Physiotherapy. 1995;81(2):72–9. http://dx.doi.org/10.1016/S0031-9406(05)67048-4. [Google Scholar]26. Norris CM. Spinal stabilisation: 4. Muscle imbalance and the low back. Physiotherapy. 1995;81(3):127–38. http://dx.doi.org/10.1016/S0031-9406(05)67068-X. [Google Scholar]27. Panjabi MM. Lumbar spine instability: a biochemical challenge. Curr Orthop. 1994;8(2):100–5. http://dx.doi.org/10.1016/S0268-0890(05)80060-X. [Google Scholar]28. Williams GN, Chmielewski T, Rudolph K, et al. Dynamic knee stability: current theory and implications for clinicians and scientists. J Orthop Sports Phys Ther. 2001;31(10):546–66. http://dx.doi.org/10.2519/jospt.2001.31.10.546. Medline:11665743. [PubMed] [Google Scholar]29. Arbanas J, Klasan GS, Nikolic M, et al. Fibre type composition of the human psoas major muscle with regard to the level of its origin. J Anat. 2009;215(6):636–41. http://dx.doi.org/10.1111/j.1469-7580.2009.01155.x. Medline:19930517. [PMC free article] [PubMed] [Google Scholar]30. Bogduk N, Pearcy M, Hadfield G. Anatomy and biomechanics of psoas major. Clin Biomech (Bristol, Avon) 1992;7(2):109–19. http://dx.doi.org/10.1016/0268-0033(92)90024-X. Medline:23915688. [PubMed] [Google Scholar]31. Brown SHM, McGill SM. Muscle force-stiffness characteristics influence joint stability: a spine example. Clin Biomech (Bristol, Avon) 2005;20(9):917–22. http://dx.doi.org/10.1016/j.clinbiomech.2005.06.002. Medline:16055250. [PubMed] [Google Scholar]32. Brown SHM, Potvin JR. Constraining spine stability levels in an optimization model leads to the prediction of trunk muscle cocontraction and improved spine compression force estimates. J Biomech. 2005;38(4):745–54. http://dx.doi.org/10.1016/j.jbiomech.2004.05.011. Medline:15713295. [PubMed] [Google Scholar]33. Lin CF, Chen CY, Lin CW. Dynamic ankle control in athletes with ankle instability during sports maneuvers. Am J Sports Med. 2011;39(9):2007–15. http://dx.doi.org/10.1177/0363546511406868. Medline:21622814. [PubMed] [Google Scholar]34. Cheng CH, Lin KH, Wang JL. Co-contraction of cervical muscles during sagittal and coronal neck motions at different movement speeds. Eur J Appl Physiol. 2008;103(6):647–54. http://dx.doi.org/10.1007/s00421-008-0760-4. Medline:18478252. [PubMed] [Google Scholar]35. Cholewicki J, McGill SM. Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin Biomech (Bristol, Avon) 1996;11(1):1–15. http://dx.doi.org/10.1016/0268-0033(95)00035-6. Medline:11415593. [PubMed] [Google Scholar]36. Cholewicki J, Panjabi MM, Khachatryan A. Stabilizing function of trunk flexor-extensor muscles around a neutral spine posture. Spine. 1997;22(19):2207–12. http://dx.doi.org/10.1097/00007632-199710010-00003. Medline:9346140. [PubMed] [Google Scholar]37. Cholewicki J, VanVliet JJ., IV Relative contribution of trunk muscles to the stability of the lumbar spine during isometric exertions. Clin Biomech (Bristol, Avon) 2002;17(2):99–105. http://dx.doi.org/10.1016/S0268-0033(01)00118-8. Medline:11832259. [PubMed] [Google Scholar]38. Cowan SM, Hodges PW, Bennell KL, et al. Altered vastii recruitment when people with patellofemoral pain syndrome complete a postural task. Arch Phys Med Rehabil. 2002;83(7):989–95. http://dx.doi.org/10.1053/apmr.2002.33234. Medline:12098160. [PubMed] [Google Scholar]39. Crisco JJ, III, Panjabi MM. The intersegmental and multisegmental muscles of the lumbar spine. A biomechanical model comparing lateral stabilizing potential. Spine. 1991;16(7):793–9. http://dx.doi.org/10.1097/00007632-199107000-00018. Medline:1925756. [PubMed] [Google Scholar]40. Danneels LA, Vanderstraeten GG, Cambier DC, et al. A functional subdivision of hip, abdominal, and back muscles during asymmetric lifting. Spine. 2001;26(6):E114–21. http://dx.doi.org/10.1097/00007632-200103150-00003. Medline:11246393. [PubMed] [Google Scholar]41. Davarani SZ, Shirazi-Adl A, Hemami H, et al. Dynamic iso-resistive trunk extension simulation: contributions of the intrinsic and reflexive mechanisms to spinal stability. Technol Health Care. 2007;15(6):415–31. Medline:18057565. [PubMed] [Google Scholar]42. Delahunt E, Monaghan K, Caulfield B. Altered neuromuscular control and ankle joint kinematics during walking in subjects with functional instability of the ankle joint. Am J Sports Med. 2006;34(12):1970–6. http://dx.doi.org/10.1177/0363546506290989. Medline:16926342. [PubMed] [Google Scholar]43. Franklin TC, Granata KP. Role of reflex gain and reflex delay in spinal stability—a dynamic simulation. J Biomech. 2007;40(8):1762–7. http://dx.doi.org/10.1016/j.jbiomech.2006.08.007. Medline:17054964. [PubMed] [Google Scholar]44. Gardner-Morse M, Stokes IAF, Laible JP. Role of muscles in lumbar spine stability in maximum extension efforts. J Orthop Res. 1995;13(5):802–8. http://dx.doi.org/10.1002/jor.1100130521. Medline:7472760. [PubMed] [Google Scholar]45. Gardner-Morse MG, Stokes IAF. The effects of abdominal muscle coactivation on lumbar spine stability. Spine. 1998;23(1):86–91, discussion 91–2. http://dx.doi.org/10.1097/00007632-199801010-00019. Medline:9460158. [PubMed] [Google Scholar]46. Granata KP, Orishimo KF, Sanford AH. Trunk muscle coactivation in preparation for sudden load. J Electromyogr Kinesiol. 2001;11(4):247–54. http://dx.doi.org/10.1016/S1050-6411(01)00003-7. Medline:11532595. [PubMed] [Google Scholar]47. Granata KP, Slota GP, Bennett BC. Paraspinal muscle reflex dynamics. J Biomech. 2004;37(2):241–7. http://dx.doi.org/10.1016/S0021-9290(03)00249-5. Medline:14706327. [PubMed] [Google Scholar]48. Granata KP, Wilson SE. Trunk posture and spinal stability. Clin Biomech (Bristol, Avon) 2001;16(8):650–9. http://dx.doi.org/10.1016/S0268-0033(01)00064-X. Medline:11535346. [PubMed] [Google Scholar]49. Granata KP, Rogers E. Torso flexion modulates stiffness and reflex response. J Electromyogr Kinesiol. 2007;17(4):384–92. http://dx.doi.org/10.1016/j.jelekin.2006.10.010. Medline:17196827. [PubMed] [Google Scholar]50. Hides JA, Stanton WR, McMahon S, et al. Effect of stabilization training on multifidus muscle cross-sectional area among young elite cricketers with low back pain. J Orthop Sports Phys Ther. 2008;38(3):101–8. http://dx.doi.org/10.2519/jospt.2008.2658. Medline:18349481. [PubMed] [Google Scholar]51. Hodges PW, Richardson CA. Inefficient muscular stabilization of the lumbar spine associated with low back pain. A motor control evaluation of transversus abdominis. Spine. 1996;21(22):2640–50. http://dx.doi.org/10.1097/00007632-199611150-00014. Medline:8961451. [PubMed] [Google Scholar]52. Hodges PW, Richardson CA. Delayed postural contraction of transversus abdominis in low back pain associated with movement of the lower limb. J Spinal Disord. 1998;11(1):46–56. http://dx.doi.org/10.1097/00002517-199802000-00008. Medline:9493770. [PubMed] [Google Scholar]53. Hungerford B, Gilleard W, Hodges P. Evidence of altered lumbopelvic muscle recruitment in the presence of sacroiliac joint pain. Spine. 2003;28(14):1593–600. http://dx.doi.org/10.1097/01.BRS.0000076821.41875.1C. Medline:12865851. [PubMed] [Google Scholar]54. Huxel KC, Swanik CB, Swanik KA, et al. Stiffness regulation and muscle-recruitment strategies of the shoulder in response to external rotation perturbations. J Bone Joint Surg Am. 2008;90(1):154–62. http://dx.doi.org/10.2106/JBJS.F.01133. Medline:18171970. [PubMed] [Google Scholar]55. Jemmett RS, Macdonald DA, Agur AMR. Anatomical relationships between selected segmental muscles of the lumbar spine in the context of multi-planar segmental motion: a preliminary investigation. Man Ther. 2004;9(4):203–10. http://dx.doi.org/10.1016/j.math.2004.07.006. Medline:15522645. [PubMed] [Google Scholar]56. Lee PJ, Rogers EL, Granata KP. Active trunk stiffness increases with co-contraction. J Electromyogr Kinesiol. 2006;16(1):51–7. http://dx.doi.org/10.1016/j.jelekin.2005.06.006. Medline:16099678. [PMC free article] [PubMed] [Google Scholar]57. Lee PJ, Granata KP, Moorhouse KM. Active trunk stiffness during voluntary isometric flexion and extension exertions. Hum Factors. 2007;49(1):100–9. http://dx.doi.org/10.1518/001872007779597993. Medline:17315847. [PubMed] [Google Scholar]58. Lee SB, Kim KJ, O’Driscoll SW, et al. Dynamic glenohumeral stability provided by the rotator cuff muscles in the mid-range and end-range of motion. A study in cadavera. J Bone Joint Surg Am. 2000;82(6):849–57. Medline:10859105. [PubMed] [Google Scholar]59. Lee S-B, An K-N. Dynamic glenohumeral stability provided by three heads of the deltoid muscle. Clin Orthop Relat Res. 2002;400:40–7. http://dx.doi.org/10.1097/00003086-200207000-00006. Medline:12072744. [PubMed] [Google Scholar]60. Lin C-F, Chen C-Y, Lin C-W. Dynamic ankle control in athletes with ankle instability during sports maneuvers. Am J Sports Med. 2011;39(9):2007–15. http://dx.doi.org/10.1177/0363546511406868. Medline:21622814. [PubMed] [Google Scholar]61. Macintosh JE, Bogduk N. The biomechanics of the lumbar multifidus. Clin Biomech (Bristol, Avon) 1986;1(4):205–13. http://dx.doi.org/10.1016/0268-0033(86)90147-6. Medline:23915551. [PubMed] [Google Scholar]62. Matějka J, Zůchová M, Koudela K, et al. Changes of muscular fibre types in erector spinae and multifidus muscles in the unstable lumbar spine. J Back Musculoskeletal Rehabil. 2006;19(1):1–5. [Google Scholar]63. Morris SL, Lay B, Allison GT. Corset hypothesis rebutted—transversus abdominis does not co-contract in unison prior to rapid arm movements. Clin Biomech (Bristol, Avon) 2012;27(3):249–54. http://dx.doi.org/10.1016/j.clinbiomech.2011.09.007. Medline:22000066. [PubMed] [Google Scholar]64. O’Sullivan PB, Twomey L, Allison GT. Altered abdominal muscle recruitment in patients with chronic back pain following a specific exercise intervention. J Orthop Sports Phys Ther. 1998;27(2):114–24. http://dx.doi.org/10.2519/jospt.1998.27.2.114. Medline:9475135. [PubMed] [Google Scholar]65. O’Sullivan P, Twomey L, Allison G, et al. Altered patterns of abdominal muscle activation in patients with chronic low back pain. Aust J Physiother. 1997;43(2):91–8. http://dx.doi.org/10.1016/S0004-9514(14)60403-7. Medline:11676676. [PubMed] [Google Scholar]66. Panjabi M, Abumi K, Duranceau J, et al. Spinal stability and intersegmental muscle forces. A biomechanical model. Spine. 1989;14(2):194–200. http://dx.doi.org/10.1097/00007632-198902000-00008. Medline:2922640. [PubMed] [Google Scholar]67. Radebold A, Cholewicki J, Panjabi MM, et al. Muscle response pattern to sudden trunk loading in healthy individuals and in patients with chronic low back pain. Spine. 2000;25(8):947–54. http://dx.doi.org/10.1097/00007632-200004150-00009. Medline:10767807. [PubMed] [Google Scholar]68. Regev GJ, Kim CW, Tomiya A, et al. Psoas muscle architectural design, in vivo sarcomere length range, and passive tensile properties support its role as a lumbar spine stabilizer. Spine. 2011;36(26):E1666–74. http://dx.doi.org/10.1097/BRS.0b013e31821847b3. Medline:21415810. [PubMed] [Google Scholar]69. Rodosky MW, Harner CD, Fu FH. The role of the long head of the biceps muscle and superior glenoid labrum in anterior stability of the shoulder. Am J Sports Med. 1994;22(1):121–30. http://dx.doi.org/10.1177/036354659402200119. Medline:8129095. [PubMed] [Google Scholar]70. Sakurai G, Ozaki J, Tomita Y, et al. Electromyographic analysis of shoulder joint function of the biceps brachii muscle during isometric contraction. Clin Orthop Relat Res. 1998;354:123–31. http://dx.doi.org/10.1097/00003086-199809000-00015. Medline:9755771. [PubMed] [Google Scholar]71. Silfies SP, Mehta R, Smith SS, et al. Differences in feedforward trunk muscle activity in subgroups of patients with mechanical low back pain. Arch Phys Med Rehabil. 2009;90(7):1159–69. http://dx.doi.org/10.1016/j.apmr.2008.10.033. Medline:19501348. [PubMed] [Google Scholar]72. Silfies SP, Squillante D, Maurer P, et al. Trunk muscle recruitment patterns in specific chronic low back pain populations. Clin Biomech (Bristol, Avon) 2005;20(5):465–73. http://dx.doi.org/10.1016/j.clinbiomech.2005.01.007. Medline:15836933. [PubMed] [Google Scholar]73. Sinkjær T, Arendt-Nielsen L. Knee stability and muscle coordination in patients with anterior cruciate ligament injuries: an electromyographic approach. J Electromyogr Kinesiol. 1991;1(3):209–17. http://dx.doi.org/10.1016/1050-6411(91)90036-5. Medline:20870511. [PubMed] [Google Scholar]74. Stokes IAF, Gardner-Morse MG. Strategies used to stabilize the elbow joint challenged by inverted pendulum loading. J Biomech. 2000;33(6):737–43. http://dx.doi.org/10.1016/S0021-9290(00)00016-6. Medline:10807995. [PubMed] [Google Scholar]75. Stokes IAF, Gardner-Morse MG, Henry SM. Abdominal muscle activation increases lumbar spinal stability: analysis of contributions of different muscle groups. Clin Biomech (Bristol, Avon) 2011;26(8):797–803. http://dx.doi.org/10.1016/j.clinbiomech.2011.04.006. Medline:21571410. [PMC free article] [PubMed] [Google Scholar]76. van Dieën JH, Cholewicki J, Radebold A. Trunk muscle recruitment patterns in patients with low back pain enhance the stability of the lumbar spine. Spine. 2003;28(8):834–41. http://dx.doi.org/10.1097/01.BRS.0000058939.51147.55. Medline:12698129. [PubMed] [Google Scholar]77. Vera-Garcia FJ, Brown SHM, Gray JR, et al. Effects of different levels of torso coactivation on trunk muscular and kinematic responses to posteriorly applied sudden loads. Clin Biomech (Bristol, Avon) 2006;21(5):443–55. http://dx.doi.org/10.1016/j.clinbiomech.2005.12.006. Medline:16442677. [PubMed] [Google Scholar]78. Ward SR, Hentzen ER, Smallwood LH, et al. Rotator cuff muscle architecture: implications for glenohumeral stability. Clin Orthop Relat Res. 2006;448(448):157–63. http://dx.doi.org/10.1097/01.blo.0000194680.94882.d3. Medline:16826111. [PubMed] [Google Scholar]79. Ward SR, Kim CW, Eng CM, et al. Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability. J Bone Joint Surg Am. 2009;91(1):176–85. http://dx.doi.org/10.2106/JBJS.G.01311. Medline:19122093. [PMC free article] [PubMed] [Google Scholar]80. Wattanaprakornkul D, Cathers I, Halaki M, et al. The rotator cuff muscles have a direction specific recruitment pattern during shoulder flexion and extension exercises. J Sci Med Sport. 2011;14(5):376–82. http://dx.doi.org/10.1016/j.jsams.2011.01.001. Medline:21333595. [PubMed] [Google Scholar]81. Gibson J, McCarron T. Feedforward muscle activity: an investigation into the onset and activity of internal oblique during two functional reaching tasks. J Bodyw Mov Ther. 2004;8(2):104–13. http://dx.doi.org/10.1016/S1360-8592(03)00102-5. [Google Scholar]82. Brown SH, Potvin JR. Constraining spine stability levels in an optimization model leads to the prediction of trunk muscle cocontraction and improved spine compression force estimates. J Biomech. 2005;38(4):745–54. http://dx.doi.org/10.1016/j.jbiomech.2004.05.011. Medline:15713295. [PubMed] [Google Scholar]83. Crossley K, Bennell K, Green S, et al. A systematic review of physical interventions for patellofemoral pain syndrome. Clin J Sport Med. 2001;11(2):103–10. http://dx.doi.org/10.1097/00042752-200104000-00007. Medline:11403109. [PubMed] [Google Scholar]84. Bolgla LA, Boling MC. An update for the conservative management of patellofemoral pain syndrome: a systematic review of the literature from 2000 to 2010. Int J Sports Phys Ther. 2011;6(2):112–25. Medline:21713229. [PMC free article] [PubMed] [Google Scholar]